Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice.

نویسندگان

  • Ah-Mee Park
  • Yuichiro J Suzuki
چکیده

Obstructive sleep apnea is associated with increased risk for cardiovascular diseases. As obstructive sleep apnea is characterized by episodic cycles of hypoxia and normoxia during sleep, we investigated effects of intermittent hypoxia (IH) on ischemia-reperfusion-induced myocardial injury. C57BL/6 mice were subjected to IH (2 min 6% O(2) and 2 min 21% O(2)) for 8 h/day for 1, 2, or 4 wk; isolated hearts were then subjected to ischemia-reperfusion. IH for 1 or 2 wk significantly enhanced ischemia-reperfusion-induced myocardial injury. However, enhanced cardiac damage was not seen in mice treated with 4 wk of IH, suggesting that the heart has adapted to chronic IH. Ischemia-reperfusion-induced lipid peroxidation and protein carbonylation were enhanced with 2 wk of IH, while, with 4 wk, oxidative stress was normalized to levels in animals without IH. H(2)O(2) scavenging activity in adapted hearts was higher after ischemia-reperfusion, suggesting the increased antioxidant capacity. This might be due to the involvement of thioredoxin, as the expression level of this protein was increased, while levels of other antioxidant enzymes were unchanged. In the heart from mice treated with 2 wk of IH, ischemia-reperfusion was found to decrease thioredoxin. Ischemia-reperfusion injury can also be enhanced when thioredoxin reductase was inhibited in control hearts. These results demonstrate that IH changes the susceptibility of the heart to oxidative stress in part via alteration of thioredoxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress

Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....

متن کامل

P-85: Evaluation of Sperm Fertility Quality in Phenyl Hydrazine-Induced Hemolytic Anemia Impacts on Mice

Background: Anemia and consequently low oxygen can cause changes in the function and structure of the testis and spermatogenesis, Iron released from red blood cells, followed by the increased oxidative stress, which may cause tissue iron. This study was designed to minimize the deleterious effects of hypoxia on the genitals. Materials and Methods: Eighteen mature male mice were randomly divided...

متن کامل

Effects of Taurine, Sestrin 2 and Phyllanthin on coronary artery diseases

Heart failure is a growing epidemic in the worldwide. Atherosclerosis is a major mechanism of cardiovascular disease including myocardial infarction and peripheral arterial disease. Moreover, it causes many diseases and deaths around the world. Atherosclerosis, like coronary artery disease (CAD), is associated with inflammation and oxidative stress. The current article has been collected the s...

متن کامل

Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure

BACKGROUND Repeated apnoea events cause intermittent hypoxia (IH), which alters the function of various systems and produces free radicals and oxidative stress. METHODS We investigated hepatic oxidative stress in adult mice subjected to intermittent hypoxia, simulating sleep apnoea. Three groups were submitted to 21 days of IH (IH-21), 35 days of IH (IH-35), or 35 days of sham IH. We assessed...

متن کامل

Oral administration of Ginkgolide B alleviates hypoxia-induced neuronal damage in rat hippocampus by inhibiting oxidative stress and apoptosis

Objective(s): The aim of this study is to explore the potential neuroprotective effects of Ginkgolide B (GB), a main terpene lactone and active component in Ginkgo biloba, in hypoxia-induced neuronal damage, and to further investigate its possible mechanisms.Materials and Methods: 54 Sprague-Dawley rats were randomly divided into three groups: the untreated control group (n=18); the hypoxia gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2007